
J. FZuid Mech. (1967), woZ. 28, part 4, p p .  643-655 

Printed in great Br i ta in  

643 
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This paper deals with the steady flow in a rectangular cavity where the motion is 
driven by the uniform translation of the top wall. Creeping flow solutions for 
cavities having aspect ratios from $ to 5 were obtained numerically by a relaxa- 
tion technique and were shown to compare favourably with Dean & Montagnon's 
(1949) similarity solution, as extended by Moffatt (1964), in the region near the 
bottom corners of a square cavity as well as throughout the major portion of a 
cavity with aspect ratio equal to 5 .  I n  addition, for a Reynolds number range 
from 20 to 4000, flow patterns were determined experimentally by means of a 
photographic technique for finite cavities, as well as for cavities of effectively in- 
finite depth. These experimental results suggest that, within finite cavities, the 
high Reynolds number steady flow should consist essentially of a single inviscid 
core of uniform vorticity with viscous effects being confined to thin shear layers 
near the boundaries, while, for cavities of infinite depth, the viscous and inertia 
forces should remain of comparable magnitude throughout the whole domain 
even in the limit of very large Reynolds number R. 

1. Introduction 
The motion generated in a fluid-filled rectangular cavity by the uniform transla- 

tion of one of the walls (figure 1)  represents one of the simplest examples of steady 
flow involving closed streamlines, and as such has occupied a position of con- 
siderable theoretical importance within the broader field of steady separated 
flows. Previous work on this topic has beenreviewed in detail by Burggraf (1966), 
who, for the special case of a square cavity, also obtained numerical solutions to 
the full Navier-Stokes equations for a range'of Reynolds number R = VD/v  
from 0 to 400 ( V is the velocity of the top plate, D is the width of the cavity and v 
is the kinematic viscosity of the fluid). From all these studies, as well as the recent 
one by Weiss & Florsheim (1965), one can obtain a fairly clear picture of the over- 
all flow characteristics in this and related systems, and yet, upon closer examina- 
tion, it becomes apparent that a number of basic questions regarding the more 
detailed structure of the flow still remain very much unsettled. 

Perhaps the most important point along these lines relates to the steady flow 
behaviour in the limit of very low viscosity. This, as will be recalled, is an old 
subject, having been first considered by Prandtl (1904), who showed, as did 
Batchelor (1956), that the steady high Reynolds number flow within closed 
streamlines should consist of an inviscid core having uniform vorticity with 
viscous effects being confined to infinitesimally thin shear layers along the bound- 
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aries. This theorem, although of considerable theoretical interest, is, however, of 
limited practical value by itself in that, for many problems, the boundaries of the 
uniform vorticity core are unknown a priori  and cannot be located from basic 
principles alone without a detailed solution of the full equations of motion. For 
example, in the case of a square cavity, one can immediately think of at least two 

X 

FIGURE 1. A sketch of the co-ordinate system in a rectangular cavity. 

possibilities: either one could assume that the boundaries of the core would have 
to coincide with the solid walls of the cavity; or, in view of Burggraf’s (1966) 
numerical results that  show, at R = 400, a flow consisting of a primary eddy plus 
two secondary eddies? appearing in the bottom corners of the cavity, one could 
suppose that the limiting flow as R + co would also possess this same feature and 
thus consist of at least three distinct inviscid cores, each with its own (uniform) 
vorticity. Clearly, from what is known so far, one has little basis for choosing 
between these two alternatives. 

An even more fundamental question arises, however, concerning the steady 
high Reynolds number flow in a cavity having effectively an infinite aspect ratio 
A = H/D. From experimental observations it is known that the motion here 
consists of a series of vortices superimposed upon one another, but what is not 
known is how the size, i.e. the maximum vertical dimension, of these eddies is 
affected by a continual increase in the Reynolds number R. Consider, for example, 
the primary vortex, i.e. the one closest to the moving wall. If one were sure that 
the size of this vortex would approach a finite limit as R + CQ, then, of course, one 
could invoke the uniform vorticity theorem to describe the motion within its 
core. This, however, is by no means certain, and in fact it is quite conceivable that 
the size of this eddy could increase indefinitely with increasing R, in which case, 

t These are in addition to the usual hierarchy of viscous corner eddies described by 
Moffatt (1964). 
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that is if it were found that the viscous forces had an important bearing on the 
overall dimensions of the vortex, one would be forced to conclude that the core of 
the eddy could never become inviscid even in the limit R-+co. Thus, once again, 
one is faced with two fundamentally distinct possibilities regarding the steady 
high Reynolds number flow with very little basis for deciding between them. 

In  view of these unsettled questions it appeared desirable therefore to study 
anew this flow system for a wide range of Reynolds numbers and aspect ratios in 
the hope of, inter alia, providing answers to the points raised above. In  this paper, 
we shall first present numerical solutions to the creeping-flow equations for aspect 
ratios from 0.25 to 5, paying particular attention to the comparison between these 
numerical results and Moffatt’s (1964) similarity solution for flow near a sharp 
corner. Following this, we shall describe the principal features of an experimental 
investigation in which the Reynolds number was varied from 18 to approximately 
4000. And, finally, we shall show how these experimental results can lead to im- 
portant conclusions regarding the nature of the steady flow in the limit R+a. 

2. Creeping-flow solution 

familiar biharmonic equation 

where $ is the dimensionless stream function, with boundary conditions : 

In  the absence of the inertia terms, the equations of motion reduce to the 

v4$ = 0, 

$ = 0 on all four boundaries, 
a$/aX= 1 at X =  0; a@/aX= 0 at X =  A =HID,  
a$/aY = O  at Y = +&. 

As already remarked by Burggraf (1966), the form of the boundary conditions 
precludes an analytic solution of this system by one of the standard procedures 
used successfully in the field of elasticity. Also, approximate methods, such as the 
variational technique (Weiss & Florsheim 1965) and Galerkin’s method (Snyder, 
Spriggs & Stewart 1964), are not refined enough for our purposes in that, besides 
their uncertain accuracy, they do not bring out some of the more interesting 
features of the solution to be described shortly. The problem was therefore 
treated numerically by means of the relaxation procedure employed by Burggraf 
(1966). 

Streamline patterns for rectangular cavities with aspect ratios A = 0.25, 0.50, 
1.0, 2.0 and 5.0 are shown in figure 2. These complement the earlier results of 
Kawaguti (1961) for aspect ratios 3, 1 and 2, which, unfortunately, are somewhat 
inaccurate owing to his rather coarse mesh size. It is interesting to note, from 
figure 2, that the pattern in the primary vortex when A = 3 is practically identical 
to that when A = 5, implying that the flow in the primary eddy remains un- 
affected by the location of the bottom wall as long as A > 2 .  The locations of the 
vortex centres are presented in table 1. It is somewhat surprising that these com- 
pare quite favourably with Weiss & Florsheim’s (1965) approximate results even 
though the latter were obtained for a system with a different boundary condition 
at X = 0. 

It is instructive at  this point to compare our numerical results with two rather 
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simple asymptotic solutions that can be derived analytically. The first of these 
applies in the limit A -+ 0 where, in view of the fact that the streamlines become 
essentially parallel to the y-axis over most of the region inside the cavity, the 
expression for the stream-function reduces to 

?j$ = S( 1 - X/A)2 .  

+37 K 10-2 

( 0 )  A = 0.25 

*= 0 

( b )  A = 0.5 

, < / I  . 1 = 2  
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5 x 10-7 

1 1 0 - 7  

I C I  ‘4 = 5 

FIGURE 2. Creeping-flow streamline patterns in rectangular cavities. 
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From this one obtains that, a t  the vortex centre, 9 = 0.148A and X = +A, 
which as seen from figure 2 and table 1 is in excellent agreement with the cor- 
responding values from the numerical results, pertaining t o  A = 4 and A = 3. 

The second analytical solution, 

@ = rh{a cos A0 + b cos ( A  - 2 )  01, (1) 

where r and 8 are the usual polar co-ordinates, is due to Dean & Moiitagnon 
(1949) and describes the viscous flow very near the apex ( r  = 0) of a corner with 
angle 2a. As shown by Moffatt (1964), complex values of A, which arise whenever 
2a < 146', imply the existence of an infinite set of vortices of diminishing size and 
rapidly decreasing strength as T-+ 0. 

Vort>ex centre xlD 
r 7 

A HID h (mesh size) 1st 2nd 3rd 4th 
- - _ _  0.25 0.0125 0.0875 

0.50 0.0125 0.1628 

2.0 0.025 0.25 1.575 
5.0 0.025 0.25 1.625 2.95 4.31 

TA3LE 1. Numerically determined vortex centre locations in creeping flow 
(tBurggraf (1966) obtained the same result with h = 0.025). 

- - - 
1 .o 0.01 0.24t - - - 

- - 

The special case 2a-+ 0 corresponds to the flow between two parallel flat plates, 
which, according to the appropriate form of the similarity solution, should consist 
of an infinite set of vortices all having a length to width ratio equal to 1.39. This 
prediction, although based on a solution which is supposed to hold only asymp- 
totically far away from the moving wall, is borne out to a surprising degree by our 
numerical results for the case A = 5 ,  which show (cf. figure 2 )  the first three 
vortices as having a length to width ratio equal to 1.40. 

The flow in the corner region of a square cavity (A = 1) offers another oppor- 
tunity for comparing the numerical results with the similarity solution, in this 
case with 2a = in-. At first difficulties were encountered because even a mesh size 
h as small as 0.01, although more than adequate for obtaining the solution in the 
core of the cavity, was found to be still too coarse to reveal the detailed stream- 
line pattern inside the corner eddies. Fortunately, it was soon observed that the 
solution in the core remained practically unaffected by changes in the structure 
ofthe corner vortices, which meant that an improved solution could be computed 
simply once convergence in the core was assured by subdividing the region around 
the corners into finer meshes and iterating further. This process of subdivision 
was repeated several times and disclosed a sequence of eddies, as shown in figure 
3, which were amazingly similar and symmetric with respect to the diagonal of 
the square cavity. Table 2 lists the relative sizes and strengths of these corner 
vortices together with the respective analytical results obtained by Moffatt (1964) 
from the similarity solution. Once again there is excellent agreement between the 
two sets, implying that Moffatt's solution remains valid not only as the apex of the 
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corner is approached, but throughout the region within which the corner vortices 
are contained. It is worth noting though that this region occupies only about 
0.5 yo of the total area of the square cavity. 

0.05 

X 

0.025 

0.025 0.05 

Y 

(4 

X 

0,001 0,002 0,003 0.004 
Y 

( b )  

0.0002 

X 

0~0001 

0~0001 0.0002 

FIGURE 3. Streamline patterns of the corner vortices of a square cavity. ( V . C .  Refers to 
vortex centre.) 

r n  rnlr,+1 %-4 Vn-+IV7z+~ 

Moffatt's solution - 16.4 - 2070 

(1st corner vortex 4.16 x 10-2) 16.4 2.06 x 1 0 - ~  ) 2170 
Numerical solution 2nd corner vortex 2.54 x 

13rd corner vortex 1.52 x 16" (4.50 x 10-11) 2110 
'9.50 x 

TABLE 2. The relative sizes and strengths of the corner vortices in the square cavity (r, 
denotes the distance froin the apex to the centre of the nth vortex,while ",-+ is the velocity 
a t  the intersection of the 45" line and the dividing streamline between the nth and the 
(n- 1)th vortices). 
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By fitting the numerical results to (1) it was also found possible to determine 
approximate values for the coefficients a and b.  This in turn gave the two ex- 
pressions : 

for A 9 1, 

@ z 0.3e-4’21x {e-2.261‘ [cos (1-4- 2.26X + 4.21 Y )  + 1.8 Y cos (1.22 - 2.26X 

+ e2.261r [cos (1.4 - 2 2 6 X  - 4.21 Y )  - 1.8Y cos (1.22 - 2 . 2 6 9  

+ 4-2 1 Y ) ]  

+ 4.2 1 Y ) ] )  
within that portion of the flow outside the primary vortex; 

forA = 1, 

@ z 0 ~ 1 5 r 3 ~ 7 4 { e 1 ~ 1 3 8 [ ~ ~ ~ ( O ” J - 3 ~ 7 4 8 +  1-131nr)+ 1.39~0s (2.3- 1.748 

+e-l.13@ [cos (0-88-3.748+ 1-131nr) + 1-39cos (2.3- 1-748 

+ 1.131nr)l 

+ 1.13 In r ) ] }  
within the region containing corner vortices. 

Although the numerical calculations can be extended in principle to include 
inertial effects, serious instabilities in the numerical procedure seem to set in for 
R > 400 (Burggraf 1966) which invalidate the results. Hence, in order to continue 
the investigation, it was found necessary to set up the experimental program 
described in the next section which covered the range of Reynolds numbers be- 
tween 20 and 4000. As will be shown, in addition to complementing the theoretical 
solutions, these experimental results will lead to important and in some respects 
surprising conclusions about the basic features of the steady flow as R + a. 

3. Experimental techniques and results 
As shown in figure 4, the apparatus consisted of a rotating wheel 12in. in 

diameter which was placed on top of a rectangular cavity having a width of 4in., 
a height of 40 in. and a span of 4 in. The walls of the cavity were made of plexiglass 
to facilitate visual observation from all directions. Also, the aspect ratio was set 
to any desired value by merely inserting a removable bottom which was then held 
in position by a pair of magnets placed outside the walls. Of course, the curvature 
of the wheel altered the shape of the top boundary from that considered in the 
mathematical model, but it was felt that except for very shallow cavities this 
modification was not sufficiently serious to warrant much concern. More bother- 
some was the unavoidable presence of three-dimensional fluid motions near the 
four intersections of the vertical sides. Although it was not possible to ascertain 
their influence on the overall flow pattern, it was observed that these motions did 
not extend into the mid-section, where to all appearances the flow was indeed 
two-dimensional. That is not to say that these wall effects were necessarily in- 
significant, but our observations did lead us to conclude that these effects were 
much less serious in our case than in the system studied by Maul1 & East (1963), 
where, under turbulent conditions, regular three-dimensional flows were noted 
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throughout the spanwise direction in cavities having large ratios of span-to- 
chord. 

The cavity was filled with a clear oil in which nitrogen-filled glass micro-spheres 
about 10.-4in. in diameter were added to serve as tracers. Since these micro- 
balloons rose very slowly and were too small to disturb the flow, their streaks on a 
time exposure picture gave a proper representation of the flow streamlines a t  
steady state. The pictures were taken by focusing a large lens with a narrow depth 
of field (about 1 cm) on the mid-section, which was illuminated from the side by a 

2 
- --v 

t 

6 in. I 

FIGURE 4. Experimental apparatus. 

slit light source in order to improve the contrast between the tracer streaks and 
the background. In  this way, using exposure times of up to 5 min, flows were even 
photographed which, as in the case of the corner eddies, were too slow to be 
observed visually. Typical streamline patterns are shown in figure 5 ,  plate 1, 
depicting very clearly many of the principal features of the motion such as the 
location of the dividing streamlines and the centres of the vortices. The aspect 
ratios in the experiments ranged from A = 0.5 to A = 10, but the majority of 
the experiments were performed with A = 1.0, 1.6 and 10. 

As explained in the introduction, one of the basic questions the present study 
intended to  resolve was in regard to the nature of the steady flow as R + a3 both 
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for cavities with finite aspect ratios as well as for cavities of infinite depth. To this 
end, let us consider first the experimental results for a square cavity as well as 
those for a rectangular cavity having an aspect ratio A of 1.6, and in particular 
the size of the upstream corner vortex, i.e. the one appearing on the right half of 
figure 6, plate 2, as a function of the Reynolds number R. This size, which is 
defined as the fraction of the vertical wall covered by the upstream vortex, was 
determined quite accurately from the time exposures and, for the case of a square 
cavity, is seen plotted against R in figure 7. As is evident, this size was found 

0 4  

$- 0.2 

0.1 

1 
f 

I 
I 

I 

50 100 500 1000 
R 

FIGURE 7. Size of the upstream corner vortex of a square cavity vs. Reynolds number. 

to increase from a value of about 0.1 under creeping-flow conditions to a maxi- 
mum of approximately 0.35 around R = 500, in excellent agreement with the 
results from Burggraf’s (1966) numerical so1ution.t With a further increase in R, 
however, the upstream corner vortex began to shrink slowly, until a t  R = 3700 it 
was found to have retreated once again into the immediate neighbourhood of the 
cavity corner. This rather surprising behaviour of the upstream corner eddy is 
even more evident in the case of the rectangular cavity with A = 1.6 and is shown 
in figure 8, plate 3. 

The experiments in a cavity with aspect ratio 10, which was used as a model 
for a cavity having an infinite depth, were also very revealing. The flow here 
consisted of a series of vortices, superimposed on one another, the first three of 
which are shown in figure 9, plate 4, a t  R N 3300. In  principle, of course, one 
should have expected many more vortices below the third, but owing to their 
extremely slow motion these could be neither observed nor photographed. As 
seen from figure 5, plate 1, the stagnation point of the streamline dividing the 
primary from the secondary eddy is well defined on the photographs and, hence, 
its distance from the moving wall, LID, was chosen to represent the size of the 
primary vortex. The functional dependence of LID on R is shown in figure 10. 

t Figure 7 also includes a point at LID = 0.267 and R = 200 which was computed 
numerically by Professor Burggraf and communicated to the authors. 
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Once again, as with finite cavities, the primary vortex was found to shrink at  
first as R was increased from the creeping flow limit; but beyond a Reynolds 
number of approximately 800 the vortex was observed to grow, with its size 
seemingly becoming proportional to Ri in the range of R between 1500 and 4000, 
at  which point instabilities began to set in. 

The picture that emerges then from these experimental investigations regard- 
ing the steady high Reynolds number flow is as follows. 

0 Photographic measurements 
A Visual estimation 
= Numerical result (flat top) 

1.1 1 

I I I I I I J 

0 10 20 30 40 50 60 70 
0.8 ‘ 

R* 

FIGURE 10. The stagnation-point position of the primary vortex in an infinite cavity vus. 
Reynolds number. 

Finite cavities 

The primary vortex will extend practically throughout the whole region of a 
cavity having a finite aspect ratio provided the Reynolds number is made 
sufficiently large, and, although the presence of the corner eddies cannot be com- 
pletely discounted since it is not certain a t  present that these will truly vanish as 
R - t q  it is evident that a t  worst these will occupy only an insignificant portion 
of the total cavity. Hence, it would appear that to all intents and purposes the 
steady flow in the limit R --f cn will consist of a single inviscid core of uniform 
vorticity with viscous effects being confined to iiifiiiitesimally thin boundary 
layers along the walls. 

This would mean, for example, that in the constant vorticity core of a cavity 
with a very small aspect ratio A 

$4 = t w X (  1 - S / A ) ,  

where, in view of the fact that the velocity outside the boundary layer is uniform, 
the constant vorticity o can be computed simply from Batchelor’s (1956) equa- 
tion (3.6). This results in a value for o equal to 4 2 .  
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Cavities of inJinite depth 

The flow here is fundamentally different from that in the preceding case, in that 
the continual increase with R of the size of the primary vortex precludes its core 
from ever attaining an inviscid state even as R -+ 00, since in a truly inviscid vortex 
the streamline pattern should not of course be affected by changes in the value 
of the Reynolds number R. This seemingly paradoxical conclusion to the effect 
that viscous forces should somehow be included in the description of the flow 
even for vanishingly small viscosity will now be supported by a relatively simple 
theoretical argument. 

Consider the primary eddy. It is known experimentally that, besides having a 
length which increases monotonically with R for R > 1500 this eddy also possesses 
a flow structure within its central part consisting of streamlines that are almost 
parallel to the z-axis. Therefore, in order to retain, even when R+co, the viscous 
as well as the inertia terms along this central core, which incidentally extends 
throughout the major portion of the eddy, we can transform the usual dimension- 
less variables X ,  Y ,  u, v and p into the corresponding stretched quantities $, $, 
&,a and @ by means of 

X = Rn$ (n > O ) ,  Y = $, u = Rn-lj.2, v = R-la and p = R2(n--1)@. (2) 

Thus, in the limit R-+m, the Navier-Stokes equations reduce to 

together with the continuity equation aa/a$+aO/afj = 0. Equation (3) cannot 
remain valid of course in the region near the moving plate where the flow is 
mostly in the y-direction and v is O(1). Here a typical boundary-layer-type 
analysis applies resulting in the familiar boundary -layer equation 

-av av a2v 
u ~ + v ~ y  = ax2, 

with U = u J R  and Z = x JR, and with boundary conditions 

v = l  at Z = O ,  v+O as Z+m. 

(4) 

Moreover, the requirement that this solution should match with that of (3) in the 
overlap domain Z + a,& --f 0 easily leads to the result than n must equal 4 in (3). 

This analysis appears to be consistent everywhere except near the two upper 
corners of the cavity, where it is not at all clear that a proper matching of our two 
solutions can be effected. For example, the analysis would require that a fluid 
element having a velocity v of O( 1) inside the boundary layer should be able to 
slow down to a velocity u of O(R-4) upon turning the upper right corner; and, 
conversely, near the upper left corner, that the flow should be able to accelerate 
suddenly from a velocity u of O(R-4) inside the viscous layer to a velocity v of 
O( 1) inside the boundary layer. Of course, these two corners in question represent 
singular regions where one would expect the high R flow to be extremely com- 
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plicated and to exhibit, possibly, the behaviour just outlined, but, obviously, 
this whole question needs to be studied further in much more detail. 

With these reservations in mind then, our theoretical arguments would 
indicate, that the length of the primary vortex should become proportional 
to ,/R for R $ 1, a fact which, as remarked earlier, is borne out by the experi- 
mental observations. Another prediction is that the speed along the central por- 
tion should be O(R-a). To test this, a series of velocity measurements? were 

0-3 1 

a 0.2: 

$ =  1.1 x 10-2 
y = 0.35 

2 

1000 2000 3000 
R 

FIGURE 11. Stretched velocity zi 'us. Reynolds number. 

undertaken using the stroboscopic air-bubble technique described by Grove 
(1963) with the results shown in figure 11. As can be seen, the data, although by 
necessity somewhat inaccurate owing to the low speeds involved, exhibit a trend 
with R which is in at  least qualitative agreement with the theoretical predictions. 

The analysis leading up to (2) and (3) can also be repeated for each region en- 
closed by any of the remaining vortices, but here the great difficulty in obtaining 
quantitative measurements of the velocities and the streamline patterns make 
any comparison between the experimental and theoretical results rather mean- 
ingless. 

Finally, it  is worth pointing out that the flow behaviour in a cavity having an 
infinite depth is qualitatively similar to that observed inside the steady circulat- 
ing wake behind a cylinder (Acrivos, Snowden, Grove & Petersen 19651, where it 
was also concluded that the viscous and inertia forces had to remain of the same 
order of magnitude even in the Iirnit R+m. It would appear, therefore, that a 
steady eddy, which is not wholly artificially constrained in the manner, say, of a 
cavity with a finite aspect ratio, does not reach a finite size as the Reynolds 
number is increased but continues to enlarge itself in such a way that a proper 
balance between the viscous and the inertia effects is maintained throughout its 
core. 

t Since the velocities have to be compared a t  the same point in the stretched co- 
ordinate system, many measurements were necessary before a few could be used. 
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